dirk-draheim

Prof. Dirk Draheim

Head of the Information Systems Group
Tallinn University of Technology, Estonia

dplp Link

vaclav-snasel

Prof. Václav Snášel

Rector of VSB - Technical University of Ostrava, Czech Republic

dplp Link

johann-eder

Prof. Johann Eder

University of Klagenfurt, Austria

dplp Link

manuel-clavel

Prof. Manuel Clavel

Vietnamese-German University, Vietnam

dplp Link

ahto-buldas

Prof. Ahto Buldas

Co-Founder and Chief Scientist at Guardtime
Chair of the OpenKSI foundation
Tallinn University of Technology, Estonia

dplp Link

tai-chung

Prof. Tai M. Chung

Sungkyunkwan University, Korea

dplp Link

tbc.
tbc.
tbc.
dirk-draheim

Professor Dirk Draheim

Bio: Dirk Draheim received the PhD from Freie Universität Berlin and the habilitation from University of Mannheim, Germany. Currently, he is full professor of information society technology at Tallinn University of Technology and head of the Information Systems Group, Tallinn University of Technology, Estonia. The Information Systems Group conducts research in large and ultra-large-scale IT systems. He is also an initiator and leader of numerous digital transformation initiatives. Dirk is author of the Springer books "Business Process Technology", "Semantics of the Probabilistic Typed Lambda Calculus" and "Generalized Jeffrey Conditionalization", and co-author of the Springer book "Form-Oriented Analysis".

Affiliation: Tallinn University of Technology, Estonia

DBLP: Link

Website: https://taltech.ee/en/dirk-draheim

Research interests: design and implementation of large-scale information systems

Keynote Topic: Digital Government Ecosystems: Foundations, Architecture, Implementation

Abstract: The so-called digital transformation is perceived as the key enabler for increasing wealth and well-being by politics, media and the citizens alike. In the same vein, digital government steadily receives more and more attention. Digital government gives rise to complex, large-scale state-level system landscapes consisting of many players and technological systems, i.e., digital government ecosystems. In this talk, we systematically approach the state-level architecture of digital government ecosystems. As a case study, we look into the case of e-Estonia and its data exchange layer X-Road. We will discover the primacy of the state's institutional design in the architecture of digital government ecosystems. Based on that insight, we will establish the notion of data governance architecture, which links data assets with accountable organizations. Our investigation results into a digital government architecture framework that can help in large-scale digital government design efforts. With its focus on data, the proposed framework perfectly fits the current discussion on moving from ICT-driven to data-centric digital government.

vaclav-snasel

Professor Václav Snášel

Bio: Václav Snášel’s research and development experience includes over 35 years in the Industry and Academia. He works in a multi-disciplinary environment involving Artificial Intelligence, Bioinformatics, Information Retrieval, Machine Intelligence, Data Science, Nature and Biologically Inspired Computing, and applied to various real-world problems. He studied Numerical Mathematics at Palacky University in Olomouc, a PhD degree obtained at Masaryk University in Brno. From 2001 to 2009, he worked as a researcher at The Institute of Computer Science of the Academy of Sciences of the Czech Republic. Since 2009 he has worked as Head of the research program Knowledge Management at IT4Innovation National Supercomputing Center; from 2010 to 2017, he worked as the Dean of the Faculty of Electrical Engineering and Computer Science, and from 2017 he is Rector of VSB-Technical University of Ostrava. He teaches as a professor at VSB – Technical University of Ostrava.

He has given 18 plenary lectures and conference tutorials in these areas. He has authored/coauthored several refereed journal/conference papers and book chapters. He has published more than 700 papers (520 papers are indexed at Web of Science, 700 indexed at Scopus). He has supervised many PhD students from the Czech Republic, Jordan, Yemen, Slovakia, Ukraine, Russia, India, China, Lybia, and Vietnam. He also supervised postdoc students from the Slovak Republic, Uruguay, and Egypt. He is co-editor of 40 books in Springer. He is the founder of successful conference series: Euro- China conference (Shen Zhen 2014, Ostrava 2015, Fujian 2016, Malaga 2017, Xi’an 2018) and Afro- Euro Conference (Addis Ababa 2014, Paris 2015, Marrakesh 2016).

Affiliation: VSB - Technical University of Ostrava, Czech Republic

DBLP: Link

Keynote Topic: In-Memory Computing Architectures for Big data and Machine Learning Applications

Abstract: Traditional computing hardware is working to meet the extensive computational load presented by the rapidly growing Machine Learning (ML) and Artificial Intelligence algorithms such as Deep Neural Networks and Big Data. In order to get hardware solutions to meet the low-latency and high-throughput computational needs of these algorithms, Non-Von Neumann computing architectures such as In-memory Computing (IMC) have been extensively researched and experimented with over the last five years. This study analyses and reviews works designed to accelerate Machine Learning. We investigate different architectural aspects and directions and provide our comparative evaluations. We further discuss IMC research's challenges and limitations and present possible directions.

tai-chung

Prof. Tai M. Chung

Affiliation: Sungkyunkwan University, Korea

DBLP: Link

Keynote Topic: Cutting Edge Technologies for Digital Therapeutic

manuel-clavel

Professor Manuel Clavel

Bio: Academic Career: Manuel Clavel received his Bachelor's degree in Philosophy from the Universidad de Navarra in 1992, and his Ph.D. from the same university in 1998. Currently, he is Deputy Director and Associate Research Professor at the IMDEA Software Institute, as well as Associate Professor at the Universidad Complutense de Madrid. During his doctoral studies, he was an International Fellow at the Computer Science Laboratory of SRI International (1994 - 1997) and a Visiting Scholar at the Computer Science Department of Stanford University (1995 - 1997). His Ph.D. dissertation was published by the Center for the Study of Language and Information at Stanford University.

Affiliation: Vietnamese-German University, Vietnam

DBLP: Link

Research interests: Rigorous, tool-supported model-driven software development, including: modeling languages, model quality assurance, and code-generation. Related interests include specification languages, automated deduction, and theorem proving.

ahto-buldas

Professor Ahto Buldas

Bio: AHTO BULDAS is professor of cryptography at Tallinn University of Technology. Ahto studied computer science at Tallinn University of Technology (1985-1991) and holds an MSc on simulation techniques for Boolean circuits (1992) and a PhD on computational algebraic graph theory (1999). Ahto’s research interests are related to applied cryptography. His time-stamping related research started in 1997 and he has published papers in the conferences Crypto, Asiacrypt and PKC. Ahto participated in the development of the Estonian Digital Signature Act and the Estonina eID card (1996-2002). His current research interests also includes the security and efficiency aspects of digital currencies, Ahto Buldas is a co-founder of Guardtime and also of Cybernetica AS.

Affiliation: Tallinn University of Technology, Estonia

DBLP: Link

Recognition: Arnold Humal’s Prize issued by the Estonian Mathematical Society (1995), Young Scientist Award from the President’s Cultural Foundation (2002), White Star IV Class Order (2015)

Keynote Topic: Secure and Efficient Implementation of Electronic Money

Abstract: During the last years, central banks have discussed possible use of central bank digital currencies (CBDC) — electronic cash. Besides the financial and economic factors also the security and scalability of technical implementation of CBDC have been studied. Blockchain technology provides high level of security independent of the technical infrastructure and enables central banks to outsource most of the CBDC operations to private sector while still having full control over the total amount of CBDC in circulation. Scalability has been the biggest technical concern of using blockchain based CBDC.

Nation wide deployment of electronic cash requires service rate of ten to hundred thousands transactions per second while the blockchain money solutions like Bitcoin only offer the rate of few dozen transactions per second. The key of filling the scalability gap is the possibility of decomposing (sharding) the blockchain. The efficiency of decomposition highly depends on the need for inter-component communication. For example, if two accounts are in different components, then paying from one account to another requires two simultaneous operations in both components: debiting one account and crediting the other. This is technically challenging as it requires solving the atomic commit problem, which has no deterministic time solutions if possible message loss is considered. On the other hand, if we imagine a single coin given by one person to another, the only parameter that changes is the ownership of the coin. Such operation is atomic. Hence, if an electronic money solution uses coins and bills to represent money and is sharded so that some coins and bills belong to one shard and others to another shard, then every single coin payment is uni shard and does not require inter shard communication.

In this work, we first present a sharded private blockchain based CBDC solution and analyze its efficiency and security. In the second part of the work, we study how the possibility of efficient sharding depends on the choice of the money scheme (accounts, coins, etc.)

johann-eder

Professor Johann Eder

Bio: Johann Eder is full professor for Information and Communication Systems in the Department of Informatics-Systems of the Alpen-Adria Universität Klagenfurt, Austria. From 2005-2013 he served as Vice President of the Austrian Science Funds (FWF). He held positions at the Universities of Linz, Hamburg and Vienna and was visiting scholar at AT&T Shannon Labs, NJ, USA, the University of California Santa Barbara, CA, USA, and the New Jersey Institute of Technology, NJ, USA.

Johann Eder published more than 190 papers in peer reviewed international journals, conference proceedings, and edited books. He chaired resp. served in numerous program committees for international conferences and as editor and referee for international journals.

Country: Austria

Affiliation: University of Klagenfurt, Austria

DBLP: Link

Research interests: The research interests of Johann Eder are information systems engineering, business process management, and data management for medical research. A particular focus of his work is the evolution of information systems and the modelling and management of temporal information and temporal constraints. Another focus is the application of information technology for medical research in particular information systems for biobanking. He successfully directed numerous competitively funded research projects on workflow management systems, temporal data warehousing, process modelling with temporal constraints, application interoperability and evolution, information systems modelling, information systems for medical research, etc.